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Key Results and Progress



● Conducted literature review
● Narrowed focus to specific problem
● Selected a paper with accompanying GitHub repository
● Defined project such that we will be able to provide results (positive or 

negative) within the next two months

Progress



2009 HHL linear solver algorithm is presented - requires fault-tolerance

2012 Cao - uses HHL in solving the Poisson Eqn

2019 Wang - uses HHL in solving the Poisson Eqn

2020 Lubasch - Variational Quantum Algorithms for nonlinear problems

2020 Lui - VQA to solve Poisson Eqn

2022 Sato - VQA to solve Poisson Eqn

Evolution of the Poisson Equation in Quantum Computing



Chosen Papers
● Y. Cao et al. Quantum algorithm and circuit design solving the Poisson 

equation, New J. Phys. 15 013021. (2013)
● Sato, Y., Kondo, R., Koide, S., Takamatsu, H., & Imoto, N. Variational 

quantum algorithm based on the minimum potential energy for solving the 
Poisson equation. Physical Review A. (2021)



What did we learn?



Consider the poisson equation such that x is defined on the 
d-dimensional cubic domain:

Del operator is the second spatial derivative hence— the definition 
being:

i.e. take two neighboring points and subtract one from the other and 
divide by the grid spacing

VQA Poisson ~ Intro to Problem

Represented as a vectors:



Transforming to quantum
Amplitude encoding function & Shift/adder operator:

The second order derivative finite difference in the quantum 
version is equivalent to:

Now the Poisson equation is now equivalent to:  

In Liu et al., they minimize the distance between the 
two vectors, and plugging in the quantum laplace 
operator:

Note: These A’s are supposed to be P’s – shift operators

VQA Poisson: Discretization



Quantum algorithm and circuit design solving the Poisson equation: Yudong Cao

I.e Above is equivalent to:

Discretization:

 The Poisson equation w/ Dirichlet boundary condition can be recast as a linear 
system. I.e Au = f

This is the explanation of how the Sato paper shows 
the A matrices for periodic, Neumann and Dirichlet

⇒

⇒

M = 4 example:



Relating to Sato from previous slide:
● Liu showed that the matrix A-Dirichlet 

can be decomposed into O(n) 
● Here, decomposition of A-periodic, 

A-Dirichlet, and A-Neumann into O(1) 
terms 



❖ Classically to solve d dimensional problem with error 
epsilon will be at least exponentially 
➢ matrix A grows exponentially as d increases.

❖ Quantum algorithm: finds a solution that is polynomial 
in the logarithm of inverse error and ~ linear in 
dimension d 

❖ achieving an exponential speed up over classical 
algorithms.

Quantum versus Classical

https://arxiv.org/pdf/1207.2485.pdf



Sato Paper: Problem
● Improves on the previous papers (Liu, Yao)
● As before, paper solves the Poisson equation 

○ Discretizing the equation => i.e. derives a system 
matrix

○ Decomposing the matrix and mapping the 
components into quantum states and into a 
quantum circuit

Total P.E Equation:

● Introduces the Energy Minimization Method:
● Cost function is based on the minimum potential energy 

of a system

● Reasoning behind this is derived       ⇒ 

Minimizing means derivative = 0: 

Applying Dirichlet and Neumann— you get 
that the first and third terms become equal to 
zero and hence vanish

Conclusion: minimizing the total potential energy w.r.t function v 
yields the state field u which is governed by poisson’s equation.



How to get to Quantum-version
After Discretization: 

● v and f denote vectors with component values of v and f at 
the nodes discretizing the domain Ω 

After 
➢ encoding f and v into quantum states with parameterized solution state
➢ Preparing f as |f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2
➢ applying the necessary condition for optimality (requiring partial of Eh(r,θ) w.r.t r is 

equal to zero)

The A matrix is the important part, gives rise to 
the three boundary conditions discussed.

⇐ 

You get the final form of Cost function:

Compared to Cost function in Liu: (does 
not provide norm to the solution)



VQA 

VQA workflow:

a) the objective function (O) — encodes the problem 
b)  the parameterized quantum circuit (U) — variables theta are tuned to 

minimize the objective function 
c) the measurement scheme — performs basis changes & measurements needed to 

compute expectation values (used to evaluate the objective)
d) the classical optimizer — minimizes the objective. 

 The Proposed Algorithm Outline:

Step 1 Initialize a set of parameters θ in a classical 
computer.

Step 2 Evaluate the cost function Eh using a quantum 
computer. 

Step 3 If a certain terminal condition is satisfied, the 
optimization procedure halts; otherwise, proceed to Step 4.

Step 4 Update the set of parameters using some classical 
optimization scheme, then return to Step 2. 

Terminal conditions:
● Optimization procedure was terminated 

when the norm of the gradients became less 
than the predetermined threshold value

● The optimization was performed 10x from 
randomly set initial parameters θ between 
[0,4*pi] for each boundary condition

(Noisy intermediate-scale quantum algorithms Kishor Bharti et. al., 2022)



Hardware-Efficient Ansatz (HEA):

Shift Operator Circuit:

Circuit of the preparation of 
|f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2 : 

● suffers from barren plateaus at long depths, it can also avoid them at 
shallow ones

● one of the most NISQ- friendly ansatzes

● “shallow HEA should likely be avoided in VQA implementations if one seeks to find a quantum 

advantage” (On the practical usefulness of the Hardware Efficient Ansatz Lorenzo Leone, 
Salvatore F.E. Oliviero, Lukasz Cincio, M. Cerezo, 2022)

= 5 layers in paper

Unitary that prepares the 
state:   

Circuits

https://arxiv.org/search/quant-ph?searchtype=author&query=Leone,+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Oliviero,+S+F
https://arxiv.org/search/quant-ph?searchtype=author&query=Cincio,+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Cerezo,+M


VQA Poisson: Resources
Recall 
➢ Finite Difference Method 
➢ Requires Function Evaluation At Three Points
➢ For Each Gradient Estimate At The Central Point

Recall 
➢ Periodic Boundary Conditions
➢ Requires That Function Values Are Equal At Periodic Intervals
➢ For Sufficiently Long Intervals Can Model Infinite Function Domains

Aperiodic may be the discretization matrix for Eh

O(n) qubits are required to estimate 
the gradient at O(2n) discretization 
nodes! Think: tensor product of measured n 
qubits.



VQA Poisson: Resources (circuit depth)

= +

O(d) gates are required to estimate the 
gradient in D spatial dimensions!



VQA Poisson: Resources 

● Mean square error is inversely proportional to the number of shots:

● Estimating cost function value with a  quantum computer:

○  Number of Q-circuits required corresponds to the numerator 
and the number of terms in denominator (the A matrix eqn 
24-26 in paper). Tc = 3, 4, 5 (periodic, Dirichlet, Neumann)

● A run of a quantum circuit to obtain a sample is a shot
● Estimation of shots to evaluate expectation values:

○ The number of terms to be measured is O(d) for the 
boundary expectation values (i.e. the denominators in 
the cost function) 

● The Cost function can be rewritten using the mean value (mu) 
and is assumed to be estimated as follows:

○ m denotes boundary condition: m = 3 (periodic), m = 4 (Dirichlet), m = 
5 (Neumann)

○ qi ^ (j) denotes the jth sample value for i-th expectation value. q1(j) is 
for the numerator expectation value in cost function equation.

State Prep:

Cost Function Eval:
Is constant. 

Gradient Eval:
Scales linearly 

● Time complexity for solving the 
Poisson equation by classical 
computing is O(N log N ) ; N = 
size of matrix =  2**n

● Improves from classically and from 
Liu:

Num_shot:

Total:



Results of Sato Paper
● The statevector simulator backend in Aer was used to evaluate the proposed 

method in an ideal environment without any noise or sampling errors. 
● Optimization procedure was terminated when the norm of the gradients became < 

predetermined threshold value. 
● The optimization was performed 10x from randomly set initial parameters θ for each 

boundary condition. 
● Required number of quantum circuits: Tc = 3,4,5 (periodic, Dirichlet, Neumann) 

(independent of scale n)
● Num_parameters is O(nD_ansats), so num_of_Q-Circuits is proportional to this.
● Classical Optimizer used for updating parameters: 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
○ The BFGS method is known for its efficiency and ability to 

converge to a local minimum in optimization problems. 
○ The number of iterations is strongly dependent on the classical 

optimization solver and the terminal condition setting 

 

Classically solving Poisson eqn: O(NlogN) w/ N = size of matrix

Graphs show that the algorithm underestimates the norms of the solution vectors 
(although the directions of the solution vectors given by the proposed method are in good 
agreement with those from classical computing)



Pt 2 results:
● The method significantly reduces the required number of expectation value calculations, and overall time 

complexity
● But, Neumann boundary condition gives a totally different solution, underestimates the norms of the solution 

vectors, although the directions of the solution vectors given by the proposed method are in good agreement 
with those from classical computing 

● Requires O(1) measurements per cost 
function evaluation–Liu had O(n) qubits

Final Conclusions of Paper:

I. provided decomposition of matrices into    
O(1) terms – hence smaller 
num_of_measurements needed

II. provided info about the norms of the 
solution vectors 

III. Time complexity has improved



New direction, next steps, 
and challenges



New Direction

● Decided at last meeting with Brian to deep dive into Sato et al. paper



Next steps: Implementation on Quantinuum

● Implementing VQA Poisson current code on Quantinuum (has not been done 
before) 

○ Simulator (in progress)
○ Simulator with noise
○ quantum computer (have access Oct 16th-22nd)

● Challenges:
○ Need to update VQA Poisson (python and qiskit) to satisfy requirements of 

Quantinuum
○ Sato et al. noted a bottleneck of this algorithm is the gate depth of the shift 

operator



Next steps: Developing other Ansatz
Developing another Ansatz to experiment with (likely Tensor network)

Matrix Product State (MPS)  Tree Tensor Network (TTN)● Need to conduct literature review (in 
progress)

● Resources: PennyLane tensor network 
templates & Qiskit code (from Alberto)

● Challenges: Figure out how to translate the 
current 1D poisson function into tensor 
networks and represent it as such

Citation: Practical overview of image classification with tensor‐network quantum circuits (Diego Guala, 2023)



Next steps: Other idea
● Possibly applying another classical optimizer? – (Other quasi-Newtonian methods) 

● Exploring direct application:
○ Application of a variational hybrid quantum-classical algorithm to heat 

conduction equation. (Y. Y. Liu et al.) 
○ A quantum algorithm for heat conduction with symmetrization. (S. Wei et 

al.)
● Barren Plateaus in this problem
● Other Discretization methods?

https://typeset.io/authors/shijie-wei-57jofirwm9
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Goals for 2nd Milestone

Implement other ansatz

Investigate Barren Plateaus

Run code on Quantinuum devices



On Tensor Networks: 
❖ A discretized function: function defined on some grid (taking a constant value on 

each grid cell
❖ Described as multi-dimensional array (i.e. a tensor)
❖ The connectivity of a tensor network is related to how entanglement is distributed 
❖ A tensor network is a collection of tensors where a subset of all indices are 

contracted

Tensor networks = are factorizations 
of large tensors into networks of 
smaller tensors

Tensor Contraction: 

Two tensor network architectures are:  
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● Rank: num_of_indices in a tensor
○ [scalar = rank 0, vector = rank 1, 

matrix = rank 2]
● Dimension: num_of_elements that can 

be taken 
○ [vect. w/ 3 elements has dim= 3]



cont’d:
Notation: Math and Visual 
Representation:

https://tensornetwork.org/diagrams/

Examples of Tensor Contractions:

Outer Product:

Trace:

Examples of Matrix-like Contractions:

2 Main Rules for Diagrams:

1. Connecting 2 index lines 
=> contraction or 
summation over 
connected indices

2. Tensor indices are noted 
by lines coming out of 
shapes–which are 
tensors

https://tensornetwork.org/diagrams/


Matrix Product State/ Tensor Train https://tensornetwork.org/mps/

● Special case of Tree Tensor Network
● Tensor networks extend matrix product state to higher dimensions
● Definition: it’s a factorization of a tensor with N indices into a chain-like 

product of 3-index tensors

MPS of N particles

Vertical lines = physical indices
Horizontal lines = ancillary indices
Each square here represents a rank-3 tensor (A)

https://tensornetwork.org/mps/


On Tensor Networks:

- Our goal: translate the current 1D poisson function into tensor networks and 
represent it as such

- Our resources included:
- Pennylane: https://pennylane.ai/qml/demos/tutorial_tn_circuits
- Qiskit: 

https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_netwo
rks_qiskit.ipynb

- Other: https://tensornetwork.org/

https://pennylane.ai/qml/demos/tutorial_tn_circuits
https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_networks_qiskit.ipynb
https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_networks_qiskit.ipynb
https://tensornetwork.org/


Original Ansatz: Hardware Efficient

1 layer



Original Ansatz: Hardware Efficient

Dirichlet BCPeriodic BC Neumann BC

# layers = 5
# qubits = 5
# trials = 10

Statevector Simulator



Other Ansatz: TTN

1 layer, 2 qubits per block



Other Ansatz: TTN

Dirichlet BCPeriodic BC Neumann BC

# layers = 5
# qubits = 5
# trials = 10

Statevector Simulator



TTN exhibits poor Bias-Variance tradeoff
Contrasting q_sol to the a priori assumed ground truth, cl_sol, yields an aggregate 
measure of residual errors. These can be decomposed using the familiar bias-variance 
tradeoff.

MSE = Bias^2 + Variance

We plotted these two contrasting solutions using our custom Ansatz constructed using 
the design pattern of tree-tensor networks (TTNs)

And we immediately observed that TTNs yield a q_sol with lower Variance but 
higher Bias than the a priori assumed ground truth cl_sol.

Shrinkage, as is purposefully designed in Lasso regression, is the likely explanation for 
this poor balance of the bias-variance tradeoff.

Modifying the TTN to have a branching factor of 3, is hypothesized to result in a better 
balance than our current TTN with a branching factor of 2. Because we view a TTN 
with a branching factor of 2 as equivalent to a L1 penalty on the parameters with a 
higher penalty coefficient / multiplier than having a TTN with a branching factor of 3. 
Put simply, we view a TTN as structural regularization not unlike Dropout from 
deep-learning literature.

Specifically, we expect a TTN with a branching factor of 3 to exhibit less Bias but also 
less Variance. Because such a modified TTN would have less Shrinkage where we 
assume the number of parametrized gates to be a form of structural 
regularization not unlike the percent of nodes randomly omitted during deep-learning 
training when using Dropout.

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://arxiv.org/abs/2212.04913
https://medium.com/qiskit/exploring-tensor-network-circuits-with-qiskit-235a057c1287
https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://online.stat.psu.edu/stat508/book/export/html/732
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036


Other Ansatz: MPS

1 layer, 2 qubits per block



Other Ansatz: Custom MPS

1 layer, 2 qubits per block
Changed Cx gate to Cz gate



Other Ansatz: Custom MPS

Dirichlet BCPeriodic BC Neumann BC

# layers = 5
# qubits = 5
# trials = 10

Statevector Simulator



Comparing Results

From Sato et al.

Custom MPS ansatz

NeumannDirichletPeriodic



Running Code with Quantinuum

Straightforward to translate qiskit circuits to tket circuits using qiskit_to_tk()

Had to decompose Uf and U(theta) into individual control gates because you 
cannot translate a custom gate

Ultimately unable to run full simulation on Quantinuum emulator, H1-1E, because 
we ran out of credits



Next Steps:

More in depth analysis/evaluation of ansatz

Run on simulator that simulates a quantum computer (e.g. takes measurements)

Decide on new platform (qBraid?)

Run on a quantum computer



Next Steps:

When evaluating/ developing an ansatz, valuable questions include:

1. Will it improve time-complexity?
2. What is the expected accuracy of the solution?
3. Is it more suitable for expressing the solutions of certain PDE’s?
4. Will it avoid barren plateaus?
5. Does it minimize error?
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Objective of NNL Mini-Apps Project

Find and implement quantum algorithms that solve common engineering problems



Objective of NNL Mini-Apps Project

Find and implement quantum algorithms that solve common engineering problems

Poisson equation

- Variety of engineering applications
- Recent publications for NISQ focused algorithms

- Available code bases



Evolution of Poisson Equation in Quantum Computing

2009 HHL linear solver algorithm is presented - requires fault-tolerance

2012 Cao - uses HHL in solving the Poisson Eqn

2019 Wang - uses HHL in solving the Poisson Eqn

2020 Lubasch - Variational Quantum Algorithms for nonlinear problems

2020 Lui - VQA to solve Poisson Eqn

2022 Sato - VQA to solve Poisson Eqn



Sato et al. - Intro

Energy Minimization Method:
- Cost Function is based on the minimum P.E of a system

 (ABOVE): Energy of system– physics motivated eqn.

Boundary conditions considered: Derivation:

Conclusion: 
 minimizing the total potential energy w.r.t function v yields the state field u which is governed by 
poisson’s equation.

- Periodic Boundary Condition
- Applying Dirichlet and Neumann— you get 

that the first and third terms become equal to 
zero and hence vanish   ⇒ 



Sato et al. - Method Part 1

Poisson Eqn s.t x is defined on d-dimensional cubic domain: 

Discretization:

- Solving =  discretizing the equation => matrix representing the system (Quantum? perhaps…) 

- Decompose matrix and map components into quantum states & onto quantum circuit. 

Finite Element Method (FEM)  
Finite Difference Method (FDM)  

Discretization Function:
- defined over some grid, taking constant value on each cell
- Can be described by a multidimensional array (vector, tensor)



Sato et. al. - Methods Part 2

● Taking 2 neighboring points, subtract one from other, divide by grid spacing—1st order 
derivative.

● Applying twice you get 2nd-order. 

● Poisson’s Eqn uses 2nd-order derivative

● The Discretized Function can be 
represented as the second order 
derivative in vector form

⇒
Poisson’s Eqn can be recast as linear 
system: Au = f



Sato et. al. - Methods Part 3

Example:

Results/Set-Up from Sato:

h = 1 (in this case) hence 
form is Av = f
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Quantum Version of Problem

After Discretization:

● v and f denote vectors with component 
values of v and f at the nodes 
discretizing the domain Ω

After doing the following:
➢ encoding f and v into quantum states with parameterized 

solution state
➢ Preparing f as |f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2
➢ applying the necessary condition for optimality 

(requiring partial of Eh(r,θ) w.r.t r is equal to zero)

Cost Function to Optimize:

Comparing to Liu Paper:

Note: different A’s for different boundary conditions



Sato et al. - Limitations

● Hardware efficient ansatz suffers from barren plateaus at long depths
● Gradient-based optimizers lead to deep circuits

○ # of circuits is proportional to # of parameters
○ # of iteration is dependent on the classical optimizer

Xn Xn w/shift add Gradient of 
A

Gradient of A 
w/shift add X0

# of gates 37 85 256 304 134

# of iterations 121 121 736 736 857

4 qubits, 2 layers, Hardware Efficient Ansatz, Periodic BCs



Our Goals

1. Implement different ansatz
2. Modify classical optimizers
3. Run on simulators
4. Run on quantum hardware



Implementing different ansatz: Tensor Networks 

● Tensor networks are factorizations of large tensors into networks of smaller tensors
● Described as multi-dimensional array (i.e. a tensor)
● The connectivity of a tensor network is related to how entanglement is distributed 

Tree Tensor Networks (TTN):Matrix Product States (MPS)



Preliminary Results: IBM Statevector Simulator

From Sato et al. - hardware efficient 
ansatz

TTN Ansatz MPS Ansatz

Periodic BCs
# layers = 5
# qubits = 5

Periodic BCs
# layers = 5
# qubits = 4

Periodic BCs
# layers = 5
# qubits = 5



Tensor Networks: Improving time complexity



q”4

From:
- 9 gates / layer
- 6 parameters / layer

q3q1 q2 q4

q’2 q’4

TTN
(4 qubits)

q1

To:
- 7 gates / layer
- 5 parameters / layer

q2 q3 q4

q’3

q”4

TTN++
(4 qubits)

c.f., our github repository

Tensor Networks: Improving time complexity

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1


TTN (8 qubits)

q3q1 q2 q4

q’2 q’4

q”4

q7q5 q6 q8

q’6 q’8

q”8

q’”8

From:
- 21 gates / layer - 14 parameters / layer

TTN++ (8 qubits)

q3q1 q2 q4

q’3

q7q5 q6 q8

q’6
q’8

q”8

To:
- 15 gates / layer - 11 parameters / layer

c.f., our github repository

Tensor Networks: Improving time complexity

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1


Tensor Networks: Escaping barren plateaus

Similar parameter sparsity can be imposed structurally as is done by reducing the number of 
parametrized gates in our tensor networks. By entangling more qubits with Toffoli gates, we 
reduce the number of parametrized gates from 18 to 14 per layer, for an ansatz using 10 qubits. 
The new ansatz is 22% more sparse, yet still required to span the solution space to the Poisson 
equation.

Structural sparsity leads to a compressed 
representation of the solution space. 
Shrinking the barren plateaus and helping 
to escape them.



Tensor Networks:
Structural regularization and shrinkage

We observed that TTNs with at most 
2-qubit entanglement yield a q_sol with 
lower Variance but higher Bias than the a 
priori assumed ground truth cl_sol.



Tensor Networks:
Improved bias / variance tradeoff

Shrinkage, as is purposefully designed in 
Lasso regression, is the likely explanation for 
this poor balance of the bias-variance tradeoff.

We need to counterbalance the reduced 
number of parametrized gates with more layers 
of the ansatz.

Future implementations should also randomize 
the entanglement groups from one layer to 
another. q

1
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q
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q
8

https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff


More Results

IBM Statevector Simulator
(Matrix-Vector Multiplication)

IBM QASM Simulator
(Ideal Quantum Computer)



More Results

IBM Statevector Simulator
(Matrix-Vector Multiplication)

IBM QASM Simulator
(Ideal Quantum Computer)

TTN 107 s

TTN++ 9 s

MPS 103 s

Custom MPS 43 s

Hardware 
Efficient

38 s

TTN 179 s

TTN++ 82 s

MPS 183 s

Custom MPS 167 s

Hardware 
Efficient

114 s



What can be said about our tensor network ansatze?

● Will they improve time-complexity? Yes
● What is the expected accuracy of the solution? Unknown
● Is it more suitable for expressing the solutions of certain PDE’s? Unknown
● Will it escape barren plateaus? Yes
● Can their error be minimized? Yes

c.f., our github repository

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1


CLASSICAL OPTIMIZERS:

Gradient Descent:

Newton’s Method:

Compariso
n:



Classic Optimizers used in the Paper - BFGS

- BFGS =  quasi-Newton optimization method — 
i.e Gradient based for smooth unconstrained 
non-linear objective functions w/out HESSIAN 

- Approximates Hessian with a positive-definite 
matrix 

- One precondition must be satisfied (“Secant 
Method”):

Minimizing Ax = b  can be equivalent to 
finding minimum of quadratic form:

& compute residual:

Start w/ a guess x0:

Minimize each iter w/ a 
line search:

with:



Graphs for CG Optimizer:

Dirichlet BC:

Periodic BC: Neumann BC:

- 2 qubits
- Custom MPS
- Layers=5



Running on Quantum Hardware

● Had access to Quantinuum credits – simulation required far too many resources and 
we quickly ran out of credits

● Applied to UMD proposal to run on quantum hardware – did a deeper analysis of 
the resource requirements – helped us identify where the algorithm could be 
optimized
○ Stick with periodic bcs
○ Modify classical optimizer
○ Try different ansatz



Future Work: Phase 2

● Implement noise models
● Error correction and optimization
● Run on simulators with noise models and possibly run on real quantum hardware
● Hear back from UMD → decide on which platform we want to continue with (noise 

models and error correction methods we use will depend on which platform we use)


