
QUANTUM COMPUTING

INTERNSHIP EXPERIENCE
August 2023 - December 2023

National Nuclear Laboratory (NNL)

NNL Mini Apps
1st Milestone Update

Mandy Bowman
Yury Chernyak
Horia Mărgărit

Key Results and Progress

● Conducted literature review
● Narrowed focus to specific problem
● Selected a paper with accompanying GitHub repository
● Defined project such that we will be able to provide results (positive or

negative) within the next two months

Progress

2009 HHL linear solver algorithm is presented - requires fault-tolerance

2012 Cao - uses HHL in solving the Poisson Eqn

2019 Wang - uses HHL in solving the Poisson Eqn

2020 Lubasch - Variational Quantum Algorithms for nonlinear problems

2020 Lui - VQA to solve Poisson Eqn

2022 Sato - VQA to solve Poisson Eqn

Evolution of the Poisson Equation in Quantum Computing

Chosen Papers
● Y. Cao et al. Quantum algorithm and circuit design solving the Poisson

equation, New J. Phys. 15 013021. (2013)
● Sato, Y., Kondo, R., Koide, S., Takamatsu, H., & Imoto, N. Variational

quantum algorithm based on the minimum potential energy for solving the
Poisson equation. Physical Review A. (2021)

What did we learn?

Consider the poisson equation such that x is defined on the
d-dimensional cubic domain:

Del operator is the second spatial derivative hence— the definition
being:

i.e. take two neighboring points and subtract one from the other and
divide by the grid spacing

VQA Poisson ~ Intro to Problem

Represented as a vectors:

Transforming to quantum
Amplitude encoding function & Shift/adder operator:

The second order derivative finite difference in the quantum
version is equivalent to:

Now the Poisson equation is now equivalent to:

In Liu et al., they minimize the distance between the
two vectors, and plugging in the quantum laplace
operator:

Note: These A’s are supposed to be P’s – shift operators

VQA Poisson: Discretization

Quantum algorithm and circuit design solving the Poisson equation: Yudong Cao

I.e Above is equivalent to:

Discretization:

 The Poisson equation w/ Dirichlet boundary condition can be recast as a linear
system. I.e Au = f

This is the explanation of how the Sato paper shows
the A matrices for periodic, Neumann and Dirichlet

⇒

⇒

M = 4 example:

Relating to Sato from previous slide:
● Liu showed that the matrix A-Dirichlet

can be decomposed into O(n)
● Here, decomposition of A-periodic,

A-Dirichlet, and A-Neumann into O(1)
terms

❖ Classically to solve d dimensional problem with error
epsilon will be at least exponentially
➢ matrix A grows exponentially as d increases.

❖ Quantum algorithm: finds a solution that is polynomial
in the logarithm of inverse error and ~ linear in
dimension d

❖ achieving an exponential speed up over classical
algorithms.

Quantum versus Classical

https://arxiv.org/pdf/1207.2485.pdf

Sato Paper: Problem
● Improves on the previous papers (Liu, Yao)
● As before, paper solves the Poisson equation

○ Discretizing the equation => i.e. derives a system
matrix

○ Decomposing the matrix and mapping the
components into quantum states and into a
quantum circuit

Total P.E Equation:

● Introduces the Energy Minimization Method:
● Cost function is based on the minimum potential energy

of a system

● Reasoning behind this is derived ⇒

Minimizing means derivative = 0:

Applying Dirichlet and Neumann— you get
that the first and third terms become equal to
zero and hence vanish

Conclusion: minimizing the total potential energy w.r.t function v
yields the state field u which is governed by poisson’s equation.

How to get to Quantum-version
After Discretization:

● v and f denote vectors with component values of v and f at
the nodes discretizing the domain Ω

After
➢ encoding f and v into quantum states with parameterized solution state
➢ Preparing f as |f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2
➢ applying the necessary condition for optimality (requiring partial of Eh(r,θ) w.r.t r is

equal to zero)

The A matrix is the important part, gives rise to
the three boundary conditions discussed.

⇐

You get the final form of Cost function:

Compared to Cost function in Liu: (does
not provide norm to the solution)

VQA

VQA workflow:

a) the objective function (O) — encodes the problem
b) the parameterized quantum circuit (U) — variables theta are tuned to

minimize the objective function
c) the measurement scheme — performs basis changes & measurements needed to

compute expectation values (used to evaluate the objective)
d) the classical optimizer — minimizes the objective.

 The Proposed Algorithm Outline:

Step 1 Initialize a set of parameters θ in a classical
computer.

Step 2 Evaluate the cost function Eh using a quantum
computer.

Step 3 If a certain terminal condition is satisfied, the
optimization procedure halts; otherwise, proceed to Step 4.

Step 4 Update the set of parameters using some classical
optimization scheme, then return to Step 2.

Terminal conditions:
● Optimization procedure was terminated

when the norm of the gradients became less
than the predetermined threshold value

● The optimization was performed 10x from
randomly set initial parameters θ between
[0,4*pi] for each boundary condition

(Noisy intermediate-scale quantum algorithms Kishor Bharti et. al., 2022)

Hardware-Efficient Ansatz (HEA):

Shift Operator Circuit:

Circuit of the preparation of
|f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2 :

● suffers from barren plateaus at long depths, it can also avoid them at
shallow ones

● one of the most NISQ- friendly ansatzes

● “shallow HEA should likely be avoided in VQA implementations if one seeks to find a quantum

advantage” (On the practical usefulness of the Hardware Efficient Ansatz Lorenzo Leone,
Salvatore F.E. Oliviero, Lukasz Cincio, M. Cerezo, 2022)

= 5 layers in paper

Unitary that prepares the
state:

Circuits

https://arxiv.org/search/quant-ph?searchtype=author&query=Leone,+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Oliviero,+S+F
https://arxiv.org/search/quant-ph?searchtype=author&query=Cincio,+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Cerezo,+M

VQA Poisson: Resources
Recall
➢ Finite Difference Method
➢ Requires Function Evaluation At Three Points
➢ For Each Gradient Estimate At The Central Point

Recall
➢ Periodic Boundary Conditions
➢ Requires That Function Values Are Equal At Periodic Intervals
➢ For Sufficiently Long Intervals Can Model Infinite Function Domains

Aperiodic may be the discretization matrix for Eh

O(n) qubits are required to estimate
the gradient at O(2n) discretization
nodes! Think: tensor product of measured n
qubits.

VQA Poisson: Resources (circuit depth)

= +

O(d) gates are required to estimate the
gradient in D spatial dimensions!

VQA Poisson: Resources

● Mean square error is inversely proportional to the number of shots:

● Estimating cost function value with a quantum computer:

○ Number of Q-circuits required corresponds to the numerator
and the number of terms in denominator (the A matrix eqn
24-26 in paper). Tc = 3, 4, 5 (periodic, Dirichlet, Neumann)

● A run of a quantum circuit to obtain a sample is a shot
● Estimation of shots to evaluate expectation values:

○ The number of terms to be measured is O(d) for the
boundary expectation values (i.e. the denominators in
the cost function)

● The Cost function can be rewritten using the mean value (mu)
and is assumed to be estimated as follows:

○ m denotes boundary condition: m = 3 (periodic), m = 4 (Dirichlet), m =
5 (Neumann)

○ qi ^ (j) denotes the jth sample value for i-th expectation value. q1(j) is
for the numerator expectation value in cost function equation.

State Prep:

Cost Function Eval:
Is constant.

Gradient Eval:
Scales linearly

● Time complexity for solving the
Poisson equation by classical
computing is O(N log N) ; N =
size of matrix = 2**n

● Improves from classically and from
Liu:

Num_shot:

Total:

Results of Sato Paper
● The statevector simulator backend in Aer was used to evaluate the proposed

method in an ideal environment without any noise or sampling errors.
● Optimization procedure was terminated when the norm of the gradients became <

predetermined threshold value.
● The optimization was performed 10x from randomly set initial parameters θ for each

boundary condition.
● Required number of quantum circuits: Tc = 3,4,5 (periodic, Dirichlet, Neumann)

(independent of scale n)
● Num_parameters is O(nD_ansats), so num_of_Q-Circuits is proportional to this.
● Classical Optimizer used for updating parameters:

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
○ The BFGS method is known for its efficiency and ability to

converge to a local minimum in optimization problems.
○ The number of iterations is strongly dependent on the classical

optimization solver and the terminal condition setting

Classically solving Poisson eqn: O(NlogN) w/ N = size of matrix

Graphs show that the algorithm underestimates the norms of the solution vectors
(although the directions of the solution vectors given by the proposed method are in good
agreement with those from classical computing)

Pt 2 results:
● The method significantly reduces the required number of expectation value calculations, and overall time

complexity
● But, Neumann boundary condition gives a totally different solution, underestimates the norms of the solution

vectors, although the directions of the solution vectors given by the proposed method are in good agreement
with those from classical computing

● Requires O(1) measurements per cost
function evaluation–Liu had O(n) qubits

Final Conclusions of Paper:

I. provided decomposition of matrices into
O(1) terms – hence smaller
num_of_measurements needed

II. provided info about the norms of the
solution vectors

III. Time complexity has improved

New direction, next steps,
and challenges

New Direction

● Decided at last meeting with Brian to deep dive into Sato et al. paper

Next steps: Implementation on Quantinuum

● Implementing VQA Poisson current code on Quantinuum (has not been done
before)

○ Simulator (in progress)
○ Simulator with noise
○ quantum computer (have access Oct 16th-22nd)

● Challenges:
○ Need to update VQA Poisson (python and qiskit) to satisfy requirements of

Quantinuum
○ Sato et al. noted a bottleneck of this algorithm is the gate depth of the shift

operator

Next steps: Developing other Ansatz
Developing another Ansatz to experiment with (likely Tensor network)

Matrix Product State (MPS) Tree Tensor Network (TTN)● Need to conduct literature review (in
progress)

● Resources: PennyLane tensor network
templates & Qiskit code (from Alberto)

● Challenges: Figure out how to translate the
current 1D poisson function into tensor
networks and represent it as such

Citation: Practical overview of image classification with tensor‐network quantum circuits (Diego Guala, 2023)

Next steps: Other idea
● Possibly applying another classical optimizer? – (Other quasi-Newtonian methods)

● Exploring direct application:
○ Application of a variational hybrid quantum-classical algorithm to heat

conduction equation. (Y. Y. Liu et al.)
○ A quantum algorithm for heat conduction with symmetrization. (S. Wei et

al.)
● Barren Plateaus in this problem
● Other Discretization methods?

https://typeset.io/authors/shijie-wei-57jofirwm9

NNL Mini Apps
2nd Milestone Update

Mandy Bowman
Yury Chernyak
Horia Mărgărit

Goals for 2nd Milestone

Implement other ansatz

Investigate Barren Plateaus

Run code on Quantinuum devices

On Tensor Networks:
❖ A discretized function: function defined on some grid (taking a constant value on

each grid cell
❖ Described as multi-dimensional array (i.e. a tensor)
❖ The connectivity of a tensor network is related to how entanglement is distributed
❖ A tensor network is a collection of tensors where a subset of all indices are

contracted

Tensor networks = are factorizations
of large tensors into networks of
smaller tensors

Tensor Contraction:

Two tensor network architectures are:

Tr
ee

 T
en

so
r

 N
et

w
or

ks
 (T

TN
):

M
at

rix
 P

ro
du

ct
 S

ta
te

s
(M

PS
)

● Rank: num_of_indices in a tensor
○ [scalar = rank 0, vector = rank 1,

matrix = rank 2]
● Dimension: num_of_elements that can

be taken
○ [vect. w/ 3 elements has dim= 3]

cont’d:
Notation: Math and Visual
Representation:

https://tensornetwork.org/diagrams/

Examples of Tensor Contractions:

Outer Product:

Trace:

Examples of Matrix-like Contractions:

2 Main Rules for Diagrams:

1. Connecting 2 index lines
=> contraction or
summation over
connected indices

2. Tensor indices are noted
by lines coming out of
shapes–which are
tensors

https://tensornetwork.org/diagrams/

Matrix Product State/ Tensor Train https://tensornetwork.org/mps/

● Special case of Tree Tensor Network
● Tensor networks extend matrix product state to higher dimensions
● Definition: it’s a factorization of a tensor with N indices into a chain-like

product of 3-index tensors

MPS of N particles

Vertical lines = physical indices
Horizontal lines = ancillary indices
Each square here represents a rank-3 tensor (A)

https://tensornetwork.org/mps/

On Tensor Networks:

- Our goal: translate the current 1D poisson function into tensor networks and
represent it as such

- Our resources included:
- Pennylane: https://pennylane.ai/qml/demos/tutorial_tn_circuits
- Qiskit:

https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_netwo
rks_qiskit.ipynb

- Other: https://tensornetwork.org/

https://pennylane.ai/qml/demos/tutorial_tn_circuits
https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_networks_qiskit.ipynb
https://github.com/Gopal-Dahale/ILearnQuantum/blob/main/tensor_networks_qiskit.ipynb
https://tensornetwork.org/

Original Ansatz: Hardware Efficient

1 layer

Original Ansatz: Hardware Efficient

Dirichlet BCPeriodic BC Neumann BC

layers = 5
qubits = 5
trials = 10

Statevector Simulator

Other Ansatz: TTN

1 layer, 2 qubits per block

Other Ansatz: TTN

Dirichlet BCPeriodic BC Neumann BC

layers = 5
qubits = 5
trials = 10

Statevector Simulator

TTN exhibits poor Bias-Variance tradeoff
Contrasting q_sol to the a priori assumed ground truth, cl_sol, yields an aggregate
measure of residual errors. These can be decomposed using the familiar bias-variance
tradeoff.

MSE = Bias^2 + Variance

We plotted these two contrasting solutions using our custom Ansatz constructed using
the design pattern of tree-tensor networks (TTNs)

And we immediately observed that TTNs yield a q_sol with lower Variance but
higher Bias than the a priori assumed ground truth cl_sol.

Shrinkage, as is purposefully designed in Lasso regression, is the likely explanation for
this poor balance of the bias-variance tradeoff.

Modifying the TTN to have a branching factor of 3, is hypothesized to result in a better
balance than our current TTN with a branching factor of 2. Because we view a TTN
with a branching factor of 2 as equivalent to a L1 penalty on the parameters with a
higher penalty coefficient / multiplier than having a TTN with a branching factor of 3.
Put simply, we view a TTN as structural regularization not unlike Dropout from
deep-learning literature.

Specifically, we expect a TTN with a branching factor of 3 to exhibit less Bias but also
less Variance. Because such a modified TTN would have less Shrinkage where we
assume the number of parametrized gates to be a form of structural
regularization not unlike the percent of nodes randomly omitted during deep-learning
training when using Dropout.

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://arxiv.org/abs/2212.04913
https://medium.com/qiskit/exploring-tensor-network-circuits-with-qiskit-235a057c1287
https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://online.stat.psu.edu/stat508/book/export/html/732
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036

Other Ansatz: MPS

1 layer, 2 qubits per block

Other Ansatz: Custom MPS

1 layer, 2 qubits per block
Changed Cx gate to Cz gate

Other Ansatz: Custom MPS

Dirichlet BCPeriodic BC Neumann BC

layers = 5
qubits = 5
trials = 10

Statevector Simulator

Comparing Results

From Sato et al.

Custom MPS ansatz

NeumannDirichletPeriodic

Running Code with Quantinuum

Straightforward to translate qiskit circuits to tket circuits using qiskit_to_tk()

Had to decompose Uf and U(theta) into individual control gates because you
cannot translate a custom gate

Ultimately unable to run full simulation on Quantinuum emulator, H1-1E, because
we ran out of credits

Next Steps:

More in depth analysis/evaluation of ansatz

Run on simulator that simulates a quantum computer (e.g. takes measurements)

Decide on new platform (qBraid?)

Run on a quantum computer

Next Steps:

When evaluating/ developing an ansatz, valuable questions include:

1. Will it improve time-complexity?
2. What is the expected accuracy of the solution?
3. Is it more suitable for expressing the solutions of certain PDE’s?
4. Will it avoid barren plateaus?
5. Does it minimize error?

NNL MINI APPS

Horia Mărgărit
Amanda Bowman

Yury Chernyak

Objective of NNL Mini-Apps Project

Find and implement quantum algorithms that solve common engineering problems

Objective of NNL Mini-Apps Project

Find and implement quantum algorithms that solve common engineering problems

Poisson equation

- Variety of engineering applications
- Recent publications for NISQ focused algorithms

- Available code bases

Evolution of Poisson Equation in Quantum Computing

2009 HHL linear solver algorithm is presented - requires fault-tolerance

2012 Cao - uses HHL in solving the Poisson Eqn

2019 Wang - uses HHL in solving the Poisson Eqn

2020 Lubasch - Variational Quantum Algorithms for nonlinear problems

2020 Lui - VQA to solve Poisson Eqn

2022 Sato - VQA to solve Poisson Eqn

Sato et al. - Intro

Energy Minimization Method:
- Cost Function is based on the minimum P.E of a system

 (ABOVE): Energy of system– physics motivated eqn.

Boundary conditions considered: Derivation:

Conclusion:
 minimizing the total potential energy w.r.t function v yields the state field u which is governed by
poisson’s equation.

- Periodic Boundary Condition
- Applying Dirichlet and Neumann— you get

that the first and third terms become equal to
zero and hence vanish ⇒

Sato et al. - Method Part 1

Poisson Eqn s.t x is defined on d-dimensional cubic domain:

Discretization:

- Solving = discretizing the equation => matrix representing the system (Quantum? perhaps…)

- Decompose matrix and map components into quantum states & onto quantum circuit.

Finite Element Method (FEM)
Finite Difference Method (FDM)

Discretization Function:
- defined over some grid, taking constant value on each cell
- Can be described by a multidimensional array (vector, tensor)

Sato et. al. - Methods Part 2

● Taking 2 neighboring points, subtract one from other, divide by grid spacing—1st order
derivative.

● Applying twice you get 2nd-order.

● Poisson’s Eqn uses 2nd-order derivative

● The Discretized Function can be
represented as the second order
derivative in vector form

⇒
Poisson’s Eqn can be recast as linear
system: Au = f

Sato et. al. - Methods Part 3

Example:

Results/Set-Up from Sato:

h = 1 (in this case) hence
form is Av = f

Di
ric

hl
et

:

Pe
rio

di
c:

N
eu

m
an

n:

Quantum Version of Problem

After Discretization:

● v and f denote vectors with component
values of v and f at the nodes
discretizing the domain Ω

After doing the following:
➢ encoding f and v into quantum states with parameterized

solution state
➢ Preparing f as |f, ψ(θ)⟩ := √ (|0⟩ |f ⟩ + |1⟩ |ψ(θ)⟩) / 2
➢ applying the necessary condition for optimality

(requiring partial of Eh(r,θ) w.r.t r is equal to zero)

Cost Function to Optimize:

Comparing to Liu Paper:

Note: different A’s for different boundary conditions

Sato et al. - Limitations

● Hardware efficient ansatz suffers from barren plateaus at long depths
● Gradient-based optimizers lead to deep circuits

○ # of circuits is proportional to # of parameters
○ # of iteration is dependent on the classical optimizer

Xn Xn w/shift add Gradient of
A

Gradient of A
w/shift add X0

of gates 37 85 256 304 134

of iterations 121 121 736 736 857

4 qubits, 2 layers, Hardware Efficient Ansatz, Periodic BCs

Our Goals

1. Implement different ansatz
2. Modify classical optimizers
3. Run on simulators
4. Run on quantum hardware

Implementing different ansatz: Tensor Networks

● Tensor networks are factorizations of large tensors into networks of smaller tensors
● Described as multi-dimensional array (i.e. a tensor)
● The connectivity of a tensor network is related to how entanglement is distributed

Tree Tensor Networks (TTN):Matrix Product States (MPS)

Preliminary Results: IBM Statevector Simulator

From Sato et al. - hardware efficient
ansatz

TTN Ansatz MPS Ansatz

Periodic BCs
layers = 5
qubits = 5

Periodic BCs
layers = 5
qubits = 4

Periodic BCs
layers = 5
qubits = 5

Tensor Networks: Improving time complexity

q”4

From:
- 9 gates / layer
- 6 parameters / layer

q3q1 q2 q4

q’2 q’4

TTN
(4 qubits)

q1

To:
- 7 gates / layer
- 5 parameters / layer

q2 q3 q4

q’3

q”4

TTN++
(4 qubits)

c.f., our github repository

Tensor Networks: Improving time complexity

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1

TTN (8 qubits)

q3q1 q2 q4

q’2 q’4

q”4

q7q5 q6 q8

q’6 q’8

q”8

q’”8

From:
- 21 gates / layer - 14 parameters / layer

TTN++ (8 qubits)

q3q1 q2 q4

q’3

q7q5 q6 q8

q’6
q’8

q”8

To:
- 15 gates / layer - 11 parameters / layer

c.f., our github repository

Tensor Networks: Improving time complexity

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1

Tensor Networks: Escaping barren plateaus

Similar parameter sparsity can be imposed structurally as is done by reducing the number of
parametrized gates in our tensor networks. By entangling more qubits with Toffoli gates, we
reduce the number of parametrized gates from 18 to 14 per layer, for an ansatz using 10 qubits.
The new ansatz is 22% more sparse, yet still required to span the solution space to the Poisson
equation.

Structural sparsity leads to a compressed
representation of the solution space.
Shrinking the barren plateaus and helping
to escape them.

Tensor Networks:
Structural regularization and shrinkage

We observed that TTNs with at most
2-qubit entanglement yield a q_sol with
lower Variance but higher Bias than the a
priori assumed ground truth cl_sol.

Tensor Networks:
Improved bias / variance tradeoff

Shrinkage, as is purposefully designed in
Lasso regression, is the likely explanation for
this poor balance of the bias-variance tradeoff.

We need to counterbalance the reduced
number of parametrized gates with more layers
of the ansatz.

Future implementations should also randomize
the entanglement groups from one layer to
another. q

1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://online.stat.psu.edu/stat508/book/export/html/732
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

More Results

IBM Statevector Simulator
(Matrix-Vector Multiplication)

IBM QASM Simulator
(Ideal Quantum Computer)

More Results

IBM Statevector Simulator
(Matrix-Vector Multiplication)

IBM QASM Simulator
(Ideal Quantum Computer)

TTN 107 s

TTN++ 9 s

MPS 103 s

Custom MPS 43 s

Hardware
Efficient

38 s

TTN 179 s

TTN++ 82 s

MPS 183 s

Custom MPS 167 s

Hardware
Efficient

114 s

What can be said about our tensor network ansatze?

● Will they improve time-complexity? Yes
● What is the expected accuracy of the solution? Unknown
● Is it more suitable for expressing the solutions of certain PDE’s? Unknown
● Will it escape barren plateaus? Yes
● Can their error be minimized? Yes

c.f., our github repository

https://github.com/Quantum-Solutions-Launchpad/QSL-NNL-P1

CLASSICAL OPTIMIZERS:

Gradient Descent:

Newton’s Method:

Compariso
n:

Classic Optimizers used in the Paper - BFGS

- BFGS = quasi-Newton optimization method —
i.e Gradient based for smooth unconstrained
non-linear objective functions w/out HESSIAN

- Approximates Hessian with a positive-definite
matrix

- One precondition must be satisfied (“Secant
Method”):

Minimizing Ax = b can be equivalent to
finding minimum of quadratic form:

& compute residual:

Start w/ a guess x0:

Minimize each iter w/ a
line search:

with:

Graphs for CG Optimizer:

Dirichlet BC:

Periodic BC: Neumann BC:

- 2 qubits
- Custom MPS
- Layers=5

Running on Quantum Hardware

● Had access to Quantinuum credits – simulation required far too many resources and
we quickly ran out of credits

● Applied to UMD proposal to run on quantum hardware – did a deeper analysis of
the resource requirements – helped us identify where the algorithm could be
optimized
○ Stick with periodic bcs
○ Modify classical optimizer
○ Try different ansatz

Future Work: Phase 2

● Implement noise models
● Error correction and optimization
● Run on simulators with noise models and possibly run on real quantum hardware
● Hear back from UMD → decide on which platform we want to continue with (noise

models and error correction methods we use will depend on which platform we use)

